首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26984篇
  免费   610篇
  国内免费   1526篇
测绘学   1586篇
大气科学   2506篇
地球物理   5098篇
地质学   13007篇
海洋学   1297篇
天文学   1781篇
综合类   2394篇
自然地理   1451篇
  2024年   5篇
  2023年   27篇
  2022年   104篇
  2021年   120篇
  2020年   95篇
  2019年   92篇
  2018年   4872篇
  2017年   4123篇
  2016年   2689篇
  2015年   367篇
  2014年   232篇
  2013年   146篇
  2012年   1127篇
  2011年   2855篇
  2010年   2158篇
  2009年   2429篇
  2008年   2008篇
  2007年   2482篇
  2006年   145篇
  2005年   306篇
  2004年   486篇
  2003年   514篇
  2002年   362篇
  2001年   153篇
  2000年   161篇
  1999年   169篇
  1998年   112篇
  1997年   110篇
  1996年   109篇
  1995年   88篇
  1994年   68篇
  1993年   71篇
  1992年   62篇
  1991年   37篇
  1990年   41篇
  1989年   31篇
  1988年   23篇
  1987年   19篇
  1986年   18篇
  1985年   9篇
  1984年   10篇
  1983年   6篇
  1982年   14篇
  1981年   24篇
  1980年   25篇
  1979年   4篇
  1978年   2篇
  1976年   6篇
  1964年   1篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand, India. The profile passing through major Himalayan thrusts: Himalayan Frontal Thrust (HFF), Main Boundary Thrust (MBT) and Main Central Thrust (MCT), is nearly perpendicular to the regional geological strike. Data processing and impedance analysis indicate that out of 44 stations MT data recorded, only 27 stations data show in general, the validity of 2D assumption. The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition. 2D smooth geoelectrical model has been presented, which provides the electrical image of the shallow and deeper crustal structure. The major features of the model are (i) a low resistivity (<50Ωm), shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain, (ii) highly resistive (> 1000Ωm) zone below the sediments at a depth of 6 km, interpreted as the top surface of the Indian plate, (iii) a low resistivity (< 10Ωm) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth. Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.  相似文献   
92.
A number of fine-grained sericite bearing pelitic, schistose lithologies occur along the Archean (Banded Gneiss Complex)-Proterozoic (Aravalli Supergroup) contact (APC) in the Udaipur valley in NW Indian craton. These Al-rich lithologies (subsequently metamorphosed) have been described as ‘paleosols’, developed over a 3.3 Ga old Archean gneissic basement and are overlain by Paleoproterozoic Aravalli quartzite. The paleosol was developed between 2.5 and 2.1, coincident with the globally recognized Great Oxidation Event (GOE). In previous studies these paleosol sections were interpreted to have developed under reducing environment, however, the finding of a ‘ferricrete’ zone in the upper part of Tulsi Namla section (east of Udaipur) during the present study (in addition to earlier reported lithologies) has led to an alternative suggestion of oxygen-rich conditions during paleosol development. The Tulsi Namla paleosol section shows all the features characteristic of a complete paleosol section described from other Archean cratons. The paleosol includes sericite schist with kyanite as the prevalent Al-silicate in the lower part of profile while chloritoid and Fe-oxides typify the Fe-rich upper part. Alumina has remained immobile during the weathering process while Fe and Mn show a decrease in the lower part of the section and an abrupt rise in the upper part, in the ferricrete zone. The field and geochemical data indicate that the Tulsi Namla section is an in situ weathering profile and at least the upper part shows evidence of oxidizing conditions.  相似文献   
93.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   
94.
Mass loading and chemical composition of atmospheric aerosols over the Arabian Sea during the pre-monsoon months of April and May have been studied as a part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB). These investigations show large spatial variabilities in total aerosol mass loading as well as that of individual chemical species. The mass loading is found to vary between 3.5 and 69.2 μg m?3, with higher loadings near the eastern and northern parts of Arabian Sea, which decreases steadily to reach its minimum value in the mid Arabian Sea. The decrease in mass loading from the coast of India towards west is estimated to have a linear gradient of 1.53 μg m?3/° longitude and an e?1 scale distance of ~2300 km. SO 4 2? , Cl? and Na+ are found to be the major ionic species present. Apart from these, other dominating watersoluble components of aerosols are NO 3 ? (17%) and Ca2+ (6%). Over the marine environment of Arabian Sea, the non-sea-salt component dominates accounting to ~76% of the total aerosol mass. The spatial variations of the various ions are examined in the light of prevailing meteorological conditions and airmass back trajectories.  相似文献   
95.
Microzonation is an effort to evaluate and map potential hazards found in an area, urban area in particular, that could be induced by strong ground shaking during an earthquake. These hazards include: ground motion amplification, liquefaction, and slope failure. The microzonation maps, depicting ground-motion amplification, liquefaction, and landslide potentials, can be produced if the ground motion on bedrock (input) and the site conditions are known. These maps, in combination with ground-motion hazard maps (on bedrock), can be used to develop a variety of hazard mitigation strategies such as seismic risk assessment, emergency response and preparedness, and land-use planning. However, these maps have certain limitations that result from the nature of regional mapping, data limitations, generalization, and computer modeling. These microzonations show that when strong ground shaking occurs, damage is more likely to occur, or be more severe, in the higher hazard areas. The zones shown on the hazard maps should not serve as a substitute for site-specific evaluations.  相似文献   
96.
Estimation of the degree of local seismic wave amplification (site effects) requires precise information about the local site conditions. In many regions of the world, local geologic information is either sparse or is not readily available. Because of this, seismic hazard maps for countries such as Mozambique, Pakistan and Turkey are developed without consideration of site factors and, therefore, do not provide a complete assessment of future hazards. Where local geologic information is available, details on the traditional maps often lack the precision (better than 1:10,000 scale) or the level of information required for modern seismic microzonation requirements. We use high-resolution (1:50,000) satellite imagery and newly developed image analysis methods to begin addressing this problem. Our imagery, consisting of optical data and digital elevation models (DEMs), is recorded from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor system. We apply a semi-automated, object-oriented, multi-resolution feature segmentation method to identify and extract local terrain features. Then we classify the terrain types into mountain, piedmont and basin units using geomorphometry (topographic slope) as our parameter. Next, on the basis of the site classification schemes from the Wills and Silva (1998) study and the Wills et al (2000) and Wills and Clahan (2006) maps of California, we assign the local terrain units with V s 30 (the average seismic shear-wave velocity through the upper 30m of the subsurface) ranges for selected regions in Mozambique, Pakistan and Turkey. We find that the applicability of our site class assignments in each region is a good first-approximation for quantifying local site conditions and that additional work, such as the verification of the terrain’s compositional rigidity, is needed.  相似文献   
97.
The coal seams of Sawang Colliery, East Bokaro Coalfields are bituminous to sub-bituminous in nature and categorized as high gaseous seams (degree II to degree III level). These seams have the potential for coal bed methane (CBM) and their maturity increases with increasing depth, as a result of enhanced pressure-temperature conditions in the underground. The vitrinite maceral group composition of the investigated coal seams ranges from 62.50–83.15%, whereas the inertinite content varies from 14.93–36.81%. The liptinite content varies from 0.66% to 3.09%. The maximum micro-pores are confined within the vitrinite group of macerals. The coal seams exhibit vitrinite reflectance values (Ro% calculated) from 0.94% (sample CG-97) to 1.21% (sample CG-119). Proximate analyses of the investigated coal samples reveal that the moisture content (M%) ranges from 1.28% to 2.98%, whereas, volatile matter (VM%) content is placed in the range of 27.01% to 33.86%. The ash content (A%) ranges from 10.92% to 30.01%. Fixed carbon (FC%) content varies from 41.53% to 55.93%. Fuel ratio variation shows a restricted range from 1.53 to 1.97. All the coal samples were found to be strongly caking and forming coke buttons. The present study is based on the adsorption isotherm experiments carried out under controlled P-T conditions for determination of actual gas adsorption capacity of the coal seams. This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17 m3/t (Std. daf), at maximum pressure of 5.92 MPa and experimental temperature of 30°C. The calculated Langmuir regression parameters PL and VL range from 2.49 to 3.75 MPa and 22.94 to 26.88 m3/t (Std. daf), respectively.  相似文献   
98.
Singh et al (2005) examined the potential of the ANN and neuro-fuzzy systems application for the prediction of dynamic constant of rockmass. However, the model proposed by them has some drawbacks according to fuzzy logic principles. This discussion will focus on the main fuzzy logic principles which authors and potential readers should take into consideration.  相似文献   
99.
This paper presents the development of spectral hazard maps for Sumatra and Java islands, Indonesia and microzonation study for Jakarta city. The purpose of this study is to propose a revision of the seismic hazard map in Indonesian Seismic Code SNI 03-1726-2002. Some improvements in seismic hazard analysis were implemented in the analysis by considering the recent seismic activities around Java and Sumatra. The seismic hazard analysis was carried out using 3-dimension (3-D) seismic source models (fault source model) using the latest research works regarding the tectonic setting of Sumatra and Java. Two hazard levels were analysed for representing 10% and 2% probability of exceedance (PE) in 50 years ground motions for Sumatra and Java. Peak ground acceleration contour maps for those two hazard levels and two additional macrozonation maps for 10% PE in 50 years were produced during this research. These two additional maps represent short period (0.2 s) and long-period (1.0 s) spectra values at the bedrock. Microzonation study is performed in order to obtain ground motion parameters such as acceleration, amplification factor and response spectra at the surface of Jakarta. The analyses were carried out using nonlinear approach. The results were used to develop contour of acceleration at the surface of Jakarta. Finally, the design response spectra for structural design purposes are proposed in this study.  相似文献   
100.
土壤中氟的形态分析   总被引:11,自引:3,他引:8  
以宁夏盐池地区高氟土壤为例,采用连续提取法对土壤样品中各形态氟进行提取,离子色谱法测定各形态氟的含量。根据研究目的及土壤特点将氟的形态划分为水溶态、离子交换态、可还原态、可氧化态及残渣态5种形态;对各种形态连续提取过程中使用的提取液进行了选择。采用建立的方法获得提取土壤中F-的检出限为0.76μg/g;方法精密度(RSD,n=7)各形态氟为水溶态氟11.3%,离子交换态氟13.5%,可还原态氟10.7%,可氧化态氟8.9%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号